Add like
Add dislike
Add to saved papers

Comparative cytocompatibility of multiple candidate cell types to photoencapsulation in PEGNB/PEGDA macroscale or microscale hydrogels.

Biomedical Materials 2018 October 3
The encapsulation of live cells into photopolymerized hydrogel scaffolds has the potential to augment or repair tissue defects, establish versatile regenerative medicine strategies, and be developed as well-defined, yet tunable microenvironments to study fundamental cellular behavior. However, hydrogel fabrication limitations constrain most studies to macroscale hydrogel scaffolds encapsulating millions of cells. These macroscale materials possess regions of heterogeneous photopolymerization conditions and are therefore poor platforms to identify the response of individual cells to encapsulation. Recently, microfluidic droplet-based hydrogel miniaturization and cell encapsulation offers high-throughput, reproducible, and continuous fabrication. Reports of post-encapsulation cell viability, however, vary widely among specific techniques. Furthermore, different cell types often exhibit different level of tolerance to photoencapsulation-induced toxicity. Accordingly, we evaluate the cellular tolerance of various encapsulation techniques and photopolymerization parameters for four mammalian cell types, with potential applications in tissue regeneration, using polyethylene glycol diacrylate or polyethylene glycol norbornene (PEGNB) hydrogels on micro- and macro-length scales. We found PEGNB provides excellent cellular tolerance and supports long-term cell survival by mitigating the deleterious effects of acrylate photopolymerization, which are exacerbated at diminishing volumes. PEGNB, therefore, is an excellent candidate for hydrogel miniaturization. PEGNB hydrogel properties, however, were found to have variable effects on encapsulating different cell candidates. This study could provide guidance for cell encapsulation practices in tissue engineering and regenerative medicine research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app