Add like
Add dislike
Add to saved papers

Molecular Targets of the Hydrophobic Block of Pluronics in Cells: a Photo Affinity Labelling Approach.

Pharmaceutical Research 2018 September 7
PURPOSE: Pluronics are known as inhibitors of multidrug resistance thus making tumor cells sensitive to therapeutic doses of drugs. The purpose of our study consists in revealing molecular targets of the hydrophobic poly(propylene oxide) block of pluronics in living cells and the dependence of the polymers chemosensitizing efficiency upon targeting.

METHODS: A photo sensitive tracer was attached to the hydrophobic poly(propylene oxide) block of 3 H-labeled tert-Bu-EO-PO copolymer. The conjugate was used for treatment cells in culture. We searched for its complexes with cellular lipids or proteins using RP TLC and SDS-electrophoresis, respectively. The chemosensitizing efficiency of pluronics was evaluated by their least concentrations sufficient for MDR reversion (CMDR ).

RESULTS: The poly(propylene oxide) block inserts in the lipid core of plasma membrane. No preferential binding of the conjugate with any cellular protein, particularly P-gp, has been detected. FITC-labeled pluronic L61 bound to alcohol insoluble cellular targets did not participate in MDR reversion. CMDR values of 13 block copolymers have been determined. These values inversely correlated with the polymers affinity toward lipids and the ability to accelerate flip-flop.

CONCLUSION: Insertion of the hydrophobic poly(propylene oxide) block of amphiphiles in the lipid core of plasma membrane and acceleration of flip-flop of lipids underlie the mechanism of MDR reversion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app