Add like
Add dislike
Add to saved papers

Predictive models for identifying risk of readmission after index hospitalization for heart failure: A systematic review.

AIMS:: Readmission rates for patients with heart failure have consistently remained high over the past two decades. As more electronic data, computing power, and newer statistical techniques become available, data-driven care could be achieved by creating predictive models for adverse outcomes such as readmissions. We therefore aimed to review models for predicting risk of readmission for patients admitted for heart failure. We also aimed to analyze and possibly group the predictors used across the models.

METHODS:: Major electronic databases were searched to identify studies that examined correlation between readmission for heart failure and risk factors using multivariate models. We rigorously followed the review process using PRISMA methodology and other established criteria for quality assessment of the studies.

RESULTS:: We did a detailed review of 334 papers and found 25 multivariate predictive models built using data from either health system or trials. A majority of models was built using multiple logistic regression followed by Cox proportional hazards regression. Some newer studies ventured into non-parametric and machine learning methods. Overall predictive accuracy with C-statistics ranged from 0.59 to 0.84. We examined significant predictors across the studies using clinical, administrative, and psychosocial groups.

CONCLUSIONS:: Complex disease management and correspondingly increasing costs for heart failure are driving innovations in building risk prediction models for readmission. Large volumes of diverse electronic data and new statistical methods have improved the predictive power of the models over the past two decades. More work is needed for calibration, external validation, and deployment of such models for clinical use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app