Add like
Add dislike
Add to saved papers

Characterization of heat shock protein 27 in extracellular vesicles: a potential anti-inflammatory therapy.

Previously, we reported that elevated serum levels of heat shock protein 27 (HSP27) are predictive of a lower risk of having a heart attack, stroke, or death from cardiovascular disease. Moreover, augmenting HSP27 (or the murine ortholog, HSP25) attenuated experimental atherogenesis, reduced inflammation, and lowered cholesterol levels. Recently, we noted that HSP27 activates NF-κB via TLR-4, resulting in attenuation of plaque inflammation; however, the precise anti-atherosclerosis mechanisms mediated by extracellular HSP27 are incompletely understood. Our purpose in this study was to investigate the existence of HSP27 in extracellular vesicles (EVs) and whether HSP27 elicited atheroprotective effects on target cells. Here, we provide evidence that HSP27 localizes to EVs derived from THP-1 cells using transmission electron microscopy (TEM) and immunogold labeling, Western blotting, ELISA, and fluorescence-activated cell sorting. TEM imaging indicated that HSP27 is found at the exosomal membrane. Multiple reactor monitor-mass spectrometric analysis of large vesicles, which included microparticles and exosomes, isolated from human plasma, also led to detection of HSP27 using the unique signature peptide, R.LFDQAFGLPR.L. Studies using THP-1 and human embryonic kidney cells show that HSP27-laden exosomes significantly stimulated NF-κB activation ( P < 0.001) and release of IL-10 ( P < 0.0001), suggesting that HSP27 may be important exosomal cargo with beneficial anti-inflammatory effects.-Shi, C., Ulke-Lemée, A., Deng, J., Batulan, Z., O'Brien, E. R. Characterization of heat shock protein 27 in extracellular vesicles: a potential anti-inflammatory therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app