Add like
Add dislike
Add to saved papers

Dynamics of partially obstructed breakup of bubbles in microfluidic Y-junctions.

Electrophoresis 2018 September 7
For revealing the dynamics of partially obstructed breakup of bubbles in microfluidic Y-junctions, the combination of dimensionless power-law and geometric model was applied to study the effects of capillary number, bubble length and channel angle on the bubble rupture process. In the squeezing process, the gas-liquid interface curve follows the parabolic model. For the evolution of the bubble neck during breakup, the increase of the bubble length, the channel angle and the capillary number leads to the decrease of the focus distance α. The chord m increases with the increase of the capillary number and the decrease of the bubble length, and it would reach the maximum value when the channel angle is 90 degree. In the fast pinch-off stage during bubble breakup, the bubble's neck curve no longer conforms to the parabolic model so the focus and chord no longer exist. For the evolution of the bubble head during breakup, the value of γ is approaching to 1 with the increase of the capillary number and the bubble length, and with the close of the channel angle to 90 degree. It is found that the quadrilateral model can be applied for the partially obstructed rupture of bubbles in the symmetrical microfluidic Y-junction. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app