Add like
Add dislike
Add to saved papers

Response surface modeling of reductions in uropathogenic Escherichia coli biofilms on silicone by cranberry extract, caprylic acid, and thymol.

Biofouling 2018 September 7
A response surface methodology was used to build a model to predict reductions in uropathogenic Escherichia coli biofilms in response to three compounds: cranberry extract [CB] at 3.0-9.0%, and caprylic acid [CAR] and thymol [TM] at 0.01%-0.05%. The predictive model for microbial reduction had a high regression coefficient (R2  = 0.9988), and the accuracy of the model was verified (R2  = 0.9527). Values of CAR, TM, and the quadratic term CAR2 were the most significant (P < 0.0001) for bacterial reduction. Interactions between CB and CAR, and TM and CB, also affected bacterial reduction. The optimum conditions (a 5.8 log10 reduction) determined by ridge analysis were 8.3% CB +0.04% CAR +0.04% TM at 37 °C for 1 min. The model could be used to predict the most cost-efficient amounts of antimicrobial agents for anti-urinary tract infection products such as catheter lock solution and antimicrobial coatings for catheters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app