COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Comparison of tractography-assisted to atlas-based targeting for deep brain stimulation in essential tremor.

BACKGROUND: Direct targeting of the dentato-rubro-thalamic tract is efficacious in DBS for tremor suppression.

OBJECTIVES: We sought to compare outcomes and optimal stimulation parameters for tremor control using the technique of directly targeting the dentato-rubro-thalamic tract to those who underwent indirect targeting of the ventral intermediate nucleus thalamus.

METHODS: Twenty consecutive essential tremor patients obtained preoperative diffusion MRIs, where the dentato-rubro-thalamic tract was individually drawn and used to directly target the ventral intermediate nucleus of the thalamus during surgery. These patients were compared to an earlier cohort of 20 consecutive patients who underwent surgery using atlas-based coordinates. Baseline and 1-year postsurgery tremor amplitude using The Essential Tremor Rating Assessment Scale was recorded, as were the parameters needed for successful tremor control.

RESULTS: The indirectly targeted group had greater baseline and postop tremor severity relative to those directly targeted (baseline, 2.9 vs. 2.6; P = 0.02; postop, 1.1 vs. 0.8; P = 0.03). Mean voltage, pulse width, and frequency for optimal tremor control in the directly targeted group (38 electrodes) = 2.8 V, 80 μs, 153 Hz; the parameters for the indirectly targeted group (38 electrodes) = 2.9 V, 86 µs, 179 Hz (significantly greater, P < 0.001). Both groups had significant improvement in arm tremor amplitude from baseline (P < 0.001) without sustained side effects.

CONCLUSION: Direct targeting of the dentato-rubro-thalamic tract provides excellent tremor control, comparable to indirectly targeting the ventral intermediate nucleus of the thalamus. Use of lower stimulation parameters, especially frequency, to control tremor in the directly targeted group suggests that it is a more efficient targeting methodology, which may minimize battery depletion. © 2018 International Parkinson and Movement Disorder Society.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app