Add like
Add dislike
Add to saved papers

Dual-taper modular hip implant: Investigation of 3-dimensional surface scans for component contact, shape, and fit.

Arthroplasty Today 2018 September
Background: The etiology of wear particle generation and subsequent corrosion in modular total hip arthroplasty implants likely begins with mechanical fretting. The purpose of this study was to determine geometric features of the male and female taper surfaces that drive stability within the neck-stem junction.

Methods: Eighteen modular hip components received 3-dimensional surface scans to examine the neck-stem taper junction using an optical scanner. The normal distance between the surfaces of the neck taper as seated in the stem slot was measured and produced a color map of the contact proximity. Contour plots identified surface shape variation and contact. Angle measurements and neck seated depth were analyzed by regression.

Results: The typical features observed were (1) a vertical line of contact at one end of the transition from the flat surface to the radius surface; (2) a vertical line of contact in the radius surface just past the centerline; (3) a concavity along the flat surface between the neck and stem components; and (4) one of the neck flat surfaces was closer to its mating surface on the stem. The seated depth of the neck was dependent on the taper angles in the flat section of the neck (R2  = 0.5000, P  = .0332).

Conclusions: The shape of the neck and stem tapers deviate from ideal design dimensions, contributing to relative motions between the neck and stem. While these processes are not proven to directly cause implant failure, they may place the implants at higher risk for failure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app