Add like
Add dislike
Add to saved papers

A stable association with PME-1 may be dispensable for PP2A demethylation - implications for the detection of PP2A methylation and immunoprecipitation.

FEBS Open Bio 2018 September
Reversible methyl-esterification (methylation) of Leu309 in the protein phosphatase 2A catalytic subunit (PP2Ac) is essential for proper biogenesis of the PP2A holoenzyme. Accumulating evidence links PP2Ac methylation to diseases, including cancer and neurodegenerative disorders. Protein phosphatase methyl-esterase (PME-1) specifically catalyzes PP2Ac demethylation. We demonstrate that PP2Ac is demethylated in cell extracts even at 0 °C unless prevented by a PME-1 methyl-esterase inhibitor. This promotes dissociation of PP2A heterotrimers with B55 or PR72 subunits, but not those with B56 subunits. These results reveal differential sensitivity of ABC heterotrimers to methylation status of the C subunit. Our study advocates caution when interpreting earlier findings, offers an effective protocol for preserving PP2A complexes, and reveals key distinctions between B subunits and their interactions with the AC core dimer of PP2A.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app