Add like
Add dislike
Add to saved papers

MicroRNA-138 inhibits SOX12 expression and the proliferation, invasion and migration of ovarian cancer cells.

The aim of the present study was to investigate the expression and biological functions of microRNA (miR)-138 in ovarian cancer at the tissue and cellular levels, as well as its underlying mechanisms. A total of 47 patients with ovarian cancer were included in the present study. Ovarian cancer tissues were subjected to staging classification according to the FIGO 2000 criteria. Lymphatic metastasis was also examined. Ovarian cancer A2780 cells were transfected using liposomes. Reverse transcription-quantitative polymerase chain reaction was used to measure the expression of miR-138. A Cell-Counting Kit 8 assay was used to examine cell viability, while a Transwell assay was employed to study cell invasion and migration. The effects of miR-138 on SOX12 protein expression were examined by western blot analysis. A dual luciferase reporter assay was performed to identify the direct interaction between miR-138 and SOX12 gene. Expression of miR-138 was downregulated in ovarian cancer tissues. The level of miR-138 in patients with ovarian cancer with lymphatic metastasis was significantly lower compared with patients without lymphatic metastasis. However, expression of miR-138 was not associated with the stage of ovarian cancer. Upregulation of miR-138 inhibited the proliferation and suppressed the invasion and migration of A2780 cells. SOX12 promoted the proliferation, invasion and migration of A2780 cells. In addition, miR-138 downregulated the expression of SOX12 via binding with the 3'-UTR of SOX12 gene. The present study demonstrates that miR-138 expression is downregulated in ovarian cancer tissues and miR-138 acts as a tumor suppressor gene by inhibiting SOX12 expression and the proliferation, invasion and migration of ovarian cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app