Add like
Add dislike
Add to saved papers

Quantitative SERS by electromagnetic enhancement normalization with carbon nanotube as an internal standard.

Optics Express 2018 September 4
Quantitative surface-enhanced Raman scattering (SERS) in practical applications still remain unresolved, mainly due to low reproducibility relying on the quality of the SERS substrates. In this paper, a carbon nanotube and Ag nanoparticles composite (CNT/AgNPs) is reported, and the carbon nanotube is as an internal standard for the calibration of SERS intensity of analyte molecules. The quantification of analyte molecules rhodamine 6G (R6G) is demonstrated in an aqueous solution with the concentration of 10-9 to 10-7 M. Raman mapping is used to investigate the stability of SERS spectra in a large scanning area, and the corresponding relative standard deviation (RSD) is calculated. SERS mapping reveals that the uniformity of Raman enhancement is improved through the build-in calibration with 2D Raman peak of CNT. Meanwhile, CNT/AgNPs samples are used to detect N2 in natural air, indicating that such self-calibration method can improve the reliability of the SERS analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app