Add like
Add dislike
Add to saved papers

Electroactive biomaterial surface engineering effects on muscle cells differentiation.

Even though skeletal muscle cells can naturally regenerate as a response to insignificant tissue damages, more severe injuries can cause irreversible loss of muscle cells mass and/or function. Until now, cell therapies are not a good approach to treat those injuries. Biomaterials such as poly(vinylidene fluoride), PVDF, can improve muscle regeneration by presenting physical cues to muscle cells that mimic the natural regeneration environment. In this way, the ferroelectric and piezoelectric properties of PVDF offer new opportunities for skeletal muscle tissue engineering once the piezoelectricity is an electromechanical effect that can be used to provide electrical signals to the cells, upon mechanical solicitations, similar to the ones found in several body tissues. Thus, previous to dynamic experiments, it is important to determine how the surface properties of the material, both in terms of the poling state (positive or negative net surface charge) and of the morphology (films or fibers) influence myoblast differentiation. It was observed that PVDF promotes myogenic differentiation of C2C12 cells as evidenced by quantitative analysis of myotube fusion, maturation index, length, diameter and number. Charged surfaces improve the fusion of muscle cells into differentiated myotubes, as demonstrated by fusion and maturation index values higher than the control samples. Finally, the use of random and oriented β-PVDF electrospun fibers scaffolds has revealed differences in cell morphology. Contrary to the randomly oriented fibers, oriented PVDF electrospun fibers have promoted the alignment of the cells. It is thus demonstrated that the use of this electroactive polymer represents a suitable approach for the development of electroactive microenvironments for effective muscle tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app