Add like
Add dislike
Add to saved papers

Physical nanocomposite hydrogels filled with low concentrations of TiO 2 nanoparticles: Swelling, networks parameters and cell retention studies.

Physical nanocomposite hydrogels composed of poly(2-hydroxyethylmethacrylate) and titanium oxide nanoparticles at low concentrations (<1.0 wt%) were synthesized. The effect of the nanoparticle content on the water swelling and mechanical properties of the hydrogels was investigated. Additionally, to study the influence of the polymer-nanoparticle interactions, a second type of nanocomposite was synthesized using surface functionalized nanoparticles with 3-methacryloxypropyltrimethoxysilane as the filler. The pristine nanoparticles increased the swelling capacity, especially at short time scales, and greater solvent diffusion coefficients and initial swelling rates were achieved. In contrast, the nanocomposite filled with functionalized nanoparticles exhibited a diminished swelling capacity, a constant diffusion coefficient and a significant decrease in the initial swelling rate. The mechanical properties were studied by dynamic mechanical analyses using stress-relaxation tests. Two Maxwell models in parallel agreed well with the curves of the relaxation modulus as a function of time and indicated that at short relaxation times, the nanoparticles did not cause an effect, but that at longer times, the nanoparticles decreased the relaxation time. Finally, hydrogel network parameters determined by swelling measurements and mechanical experiments indicated that the hydrogel with well distributed nanoparticles decreases the molar mass between crosslink point and the mesh size, while poorly distributed nanoparticles lead to larger mesh size. Our functional studies show that the addition of titanium oxide nanoparticles improves the ability of nanocomposite hydrogels to retain aggregates of skeletal muscle cells, revealing their potential use as suitable scaffolds for tissue repair strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app