Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exosite 1 thrombin inhibition with JNJ-64179375 inhibits thrombus formation in a human translational model of thrombosis.

AIMS: JNJ-64179375 (hereafter JNJ-9375) is a first-in-class, highly specific, large molecule, exosite 1 thrombin inhibitor. In preclinical studies, JNJ-9375 demonstrated robust antithrombotic protection with a wider therapeutic index when compared to apixaban. The purpose of the present study was to examine for the first time the antiplatelet, anticoagulant and antithrombotic effects of JNJ-9375 in a translational model of ex vivo human thrombosis.

METHODS AND RESULTS: Fifteen healthy volunteers participated in a double-blind randomized crossover study of JNJ-9375 (2.5, 25, and 250 μg/mL), bivalirudin (6 μg/mL; positive control), and matched placebo. Coagulation, platelet activation, and thrombus formation were determined using coagulation assays, flow cytometry, and an ex vivo perfusion chamber, respectively.JNJ-9375 caused concentration-dependent prolongation of all measures of blood coagulation (prothrombin time, activated partial thromboplastin time, and thrombin time; P < 0.001 for all) and agonist selective inhibition of thrombin (0.1 U/mL) stimulated platelet p-selectin expression (P < 0.001) and platelet-monocyte aggregates (P = 0.002). Compared to placebo, JNJ-9375 (250 μg/mL) reduced mean total thrombus area by 41.1% (95% confidence intervals 22.3 to 55.3%; P < 0.001) at low shear and 32.3% (4.9 to 51.8%; P = 0.025) at high shear. Under both shear conditions, there was a dose-dependent decrease in fibrin-rich thrombus (P < 0.001 for both) but not platelet-rich thrombus (P = ns for both).

CONCLUSION: Exosite 1 inhibition with JNJ-9375 caused prolongation of blood coagulation, selective inhibition of thrombin-mediated platelet activation, and reductions in ex vivo thrombosis driven by a decrease in fibrin-rich thrombus formation. JNJ-9375 represents a novel class of anticoagulant with potential therapeutic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app