Add like
Add dislike
Add to saved papers

Three-dimensional localized chirped Airy-circular wave packets in free space.

By solving the (3+1)-dimensional free-space Schrödinger equation in circular cylindrical coordinates, we have systematically analyzed the propagation of chirped Airy-circular (CAiCi) wave packets. The complex amplitude of the CAiCi wave packets is constructed by the Airy function, the Gaussian function, and the confluent hypergeometric function. We find that the CAiCi wave packets are some coaxial ring pulses stacked along the temporal domain in the initial position, which are modulated by the chirped factor, the initial velocity, the distribution factor, and the propagation distance. Meanwhile, the wave packets will appear to undergo intensity attenuation, diffusion, convergence, and so on. We can also modulate the shape of the wave packets and change their optical properties by altering the mode numbers. Furthermore, we analyze the evolution properties of the wave packets in detail from the aspects of the gradient force, the scattering force, phase, the Poynting vector, and the angular momentum, and find some interesting phenomena.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app