Add like
Add dislike
Add to saved papers

Adaptive dual-exposure fusion-based transport of intensity phase microscopy.

Applied Optics 2018 September 2
Via the transport of intensity phase microscopy, quantitative phase can be retrieved directly from captured multi-focal intensities. The accuracy of the retrieved phases depends highly on the quality of the recorded images; therefore, the exposure time should be carefully chosen for high-quality intensity captures. However, it is difficult to record well-exposure intensities to maintain rather a high signal to noise ratio and to avoid over-exposure due to the complex samples. In order to simplify the exposure determination, here the adaptive dual-exposure fusion-based transport of intensity phase microscopy is proposed: with captured short- and long-exposure images, the well-exposure multi-focal images can be numerically reconstructed, and then high-accurate phase can be computed from these reconstructed intensities. With both simulations and experiments provided in this paper, it is proved that the adaptive dual-exposure fusion-based transport of intensity phase microscopy not only provides numerically reconstructed well-exposure image with simple operation and fast speed but also extracts highly accurate retrieved phase. Moreover, the exposure time selection scope of the proposed method is much wider than that based on single exposure, and even though there is an over-exposure region in the long-exposure image, a well-exposure image can still be reconstructed with high precision. Considering its advantages of high accuracy, fast speed, simple operation, and wide application scope, the proposed technique can be adopted as quantitative phase microscopy for high-quality observations and measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app