Add like
Add dislike
Add to saved papers

Structure evolution of h.c.p./c.c.p. metal oxide interfaces in solid-state reactions.

The structure of crystalline interfaces plays an important role in solid-state reactions. The Al2 O3 /MgAl2 O4 /MgO system provides an ideal model system for investigating the mechanisms underlying the migration of interfaces during interface reaction. MgAl2 O4 layers have been grown between Al2 O3 and MgO, and the atomic structure of Al2 O3 /MgAl2 O4 interfaces at different growth stages was characterized using aberration-corrected scanning transmission electron microscopy. The oxygen sublattice transforms from hexagonal close-packed (h.c.p.) stacking in Al2 O3 to cubic close-packed (c.c.p.) stacking in MgAl2 O4 . Partial dislocations associated with steps are observed at the interface. At the reaction-controlled early growth stages, such partial dislocations coexist with the edge dislocations. However, at the diffusion-controlled late growth stages, such partial dislocations are dominant. The observed structures indicate that progression of the Al2 O3 /MgAl2 O4 interface into Al2 O3 is accomplished by the glide of partial dislocations accompanied by the exchange of Al3+ and Mg2+ cations. The interface migration may be envisaged as a plane-by-plane zipper-like motion, which repeats along the interface facilitating its propagation. MgAl2 O4 grains can adopt two crystallographic orientations with a twinning orientation relationship, and grow by dislocations gliding in opposite directions. Where the oppositely propagating partial dislocations and interface steps meet, interlinked twin boundaries and incoherent Σ3 grain boundaries form. The newly grown MgAl2 O4 grains compete with each other, leading to a growth selection and successive coarsening of the MgAl2 O4 grains. This understanding could help to interpret the interface reaction or phase transformation of a wide range of materials that exhibit a similar h.c.p./c.c.p. transition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app