Add like
Add dislike
Add to saved papers

Evolution of Brain Glucose Metabolic Abnormalities in Children With Epilepsy and SCN1A Gene Variants.

Three children with drug-refractory epilepsy, normal magnetic resonance image (MRI), and a heterozygous SCN1A variant underwent 2-deoxy-2-[18 F]fluoro-d-glucose positron emission tomography (FDG-PET) scanning between age 6 months and 1 year and then at age 3 years 6 months to 5 years 5 months. Regional FDG uptake values were compared to those measured in age- and gender-matched pseudo-controls. At baseline, the brain glucose metabolic pattern in the SCN1A group was similar to that of the pseudo-controls. At follow-up, robust decreases of normalized FDG uptake was found in bilateral frontal, parietal and temporal cortex, with milder decreases in occipital cortex. Children with epilepsy and an SCN1A variant have a normal pattern of cerebral glucose metabolism at around 1 year of age but develop bilateral cortical glucose hypometabolism by age 4 years, with maximal decreases in frontal, parietal, and temporal cortex. This metabolic pattern may be characteristic of epilepsy associated with SCN1A variants and may serve as a biomarker to monitor disease progression and response to treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app