Add like
Add dislike
Add to saved papers

Comprehensive analysis of differential circular RNA expression in a mouse model of colitis-induced colon carcinoma.

Circular RNAs (circRNAs) have received increasing attention for their involvement in the pathogenesis of cancer; however, the characterization and function of circRNAs in colitis-induced colon carcinoma remains largely unknown. A colitis-induced colon carcinoma model was established in mice treated with azoxymethane-dextran sodium sulfate (AOM-DSS), and the circRNA profile was screened by next generation sequencing. Bioinformatic tools, including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and network analysis were used to predict the functions of differentially expressed circRNAs and potentially coexpressed target genes. Among the detected candidate 3069 circRNA genes, 126 circRNAs were upregulated, and 108 circRNAs were down regulated in colon tissues from AOM/DSS mice compared to those from control mice. A total of six of these candidate circRNAs were validated by RT-PCR. GO analysis revealed that numerous target genes including most microRNAs were involved in the Ras-Raf-MAPK pathway, actin cytoskeleton, focal adhesion, and additional biological processes. Our study revealed a comprehensive expression and functional profile for differentially expressed circRNAs in AOM/DSS induced colon carcinogenesis, indicating possible involvement of these dysregulated circRNAs in the development of colitis-induced colon carcinoma. The mmu-circ-001226/mmu-circ-000287-miRNA-mRNA network may provide a potential mechanism for colitis-associated colorectal cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app