Add like
Add dislike
Add to saved papers

Effect of thiophene substitution on the intersystem crossing of arene photosensitizers.

The effect of thienyl substitution on the intersystem crossing (ISC) of a few arenes was studied using steady state and time-resolved transient absorption and emission spectroscopies, as well as DFT/TDDFT computations. We found that the phenyl and thienyl substituents generally induce red-shifted absorptions for the chromophores, and the DFT/TDDFT computations show that the red-shifted absorption and emission are due to the increased HOMO and the reduced LUMO energy levels. Nanosecond transient absorption spectra indicate the formation of a triplet state, the triplet state lifetime is up to 282 μs, and the singlet oxygen quantum yields (ΦΔ ) are up to 60%. DFT/TDDFT computations indicate that introducing the thienyl substituent alters the relative singlet/triplet excited state energy levels, and the energy level-matched S1 /T2 states are responsible for the enhanced ISC of the thienyl compounds. This information is useful for the design of heavy atom-free triplet photosensitizers and for the study of the fundamental photochemistry of organic compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app