Add like
Add dislike
Add to saved papers

A network pharmacology approach to explore the mechanisms of Erxian decoction in polycystic ovary syndrome.

Background: Polycystic ovary syndrome (PCOS) significantly affects women's health and well-being. To explore the pharmacological basis of the Erxian decoction (EXD) action in PCOS therapy, a network interaction analysis was conducted at the molecular level.

Methods: The active elements of EXD were identified according to the oral bioavailability and drug-likeness filters from three databases: traditional Chinese medicine system pharmacology analysis platform, TCM@taiwan and TCMID, and their potential targets were also identified. Genes associated with PCOS and established protein-protein interaction networks were mined from the NCBI database. Finally, significant pathways and functions of these networks were identified using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses to determine the mechanism of action of EXD.

Results: Seventy active compounds were obtained from 981 ingredients present in the EXD decoction, corresponding to 247 targets. In addition, 262 genes were found to be closely related with PCOS, of which 50 overlapped with EXD and were thus considered therapeutically relevant. Pathway enrichment analysis identified PI3k-Akt, insulin resistance, Toll-like receptor, MAPK and AGE-RAGE from a total of 15 significant pathways in PCOS and its treatment.

Conclusions: EXD can effectively improve the symptoms of PCOS and our systemic pharmacological analysis lays the experimental foundation for further clinical applications of EXD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app