Add like
Add dislike
Add to saved papers

The nonlinear ultrasound needle pulse.

Recent work has established an analytical formulation of broadband fields which extend in the axial direction and converge to a narrow concentrated line. Those unique (needle) fields have their origins in an angular spectrum configuration in which the forward propagating wavenumber of the field ( k z ) is constant across any z plane for all of the propagated frequencies. A 3 MHz-based, finite amplitude distorted simulation of such a field is considered here in a water path scenario relevant to medical imaging. That nonlinear simulation had its focal features compared to those of a comparable Gaussian beam. The results suggest that the unique convergence of the needle pulse to a narrow but extended axial line in linear propagation is also inherited by higher harmonics in nonlinear propagation. Furthermore, the linear needle field's relatively short duration focal pulses, and the asymptotic declines of its radial profiles, also hold for the associated higher harmonics. Comparisons with the Gaussian field highlight some unique and potentially productive features of needle fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app