Add like
Add dislike
Add to saved papers

Hannay's hoop beyond asymptotics.

Chaos 2018 August
Certain systems do not completely return to themselves when a subsystem moves through a closed circuit in physical or parameter space. A geometric phase, known classically as Hannay's angle and quantum mechanically as Berry's phase, quantifies such anholonomy. We study the classical example of a bead sliding frictionlessly on a slowly rotating hoop. We elucidate how forces in the inertial frame and pseudo-forces in the rotating frame shift the bead. We then computationally generalize the effect to arbitrary-not necessarily adiabatic-motions. We thereby extend the study of this classical geometric phase from theory to experiment via computation, as we realize the dynamics with a simple apparatus of wet ice cylinders sliding on a polished metal plate in 3D printed plastic channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app