Add like
Add dislike
Add to saved papers

Nonlinear waves in a model for silicate layers.

Chaos 2018 August
Some layered silicates are composed of positive ions, surrounded by layers of ions with opposite sign. Mica muscovite is a particularly interesting material, because there exist fossil and experimental evidence for nonlinear excitations transporting localized energy and charge along the cation rows within the potassium layers. This evidence suggests that there are different kinds of excitations with different energies and properties. Some of the authors proposed recently a one-dimensional model based on physical principles and the silicate structure. The main characteristic of the model is that it has a hard substrate potential and two different repulsion terms, between ions and nuclei. In a previous work with this model, it was found the propagation of crowdions, i.e., lattice kinks in a lattice with substrate potential that transport mass and charge. They have a single specific velocity and energy coherent with the experimental data. In the present work, we perform a much more thorough search for nonlinear excitations in the same model using the pseudospectral method to obtain exact nanopteron solutions, which are single kinks with tails, crowdions, and bi-crowdions. We analyze their velocities, energies, and stability or instability and the possible reasons for the latter. We relate the different excitations with their possible origin from recoils from different beta decays and with the fossil tracks. We explore the consequences of some variation of the physical parameters because their values are not perfectly known. Through a different method, we also have found stationary and moving breathers, that is, localized nonlinear excitations with an internal vibration. Moving breathers have small amplitude and energy, which is also coherent with the fossil evidence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app