Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dynamic transcriptome profile in db/db skeletal muscle reveal critical roles for long noncoding RNA regulator.

T2DM is a global health problem that seriously lowers the quality of life and insulin resistance makes a considerable contribution to the pathophysiology of T2DM. Long noncoding RNAs (lncRNAs) have emerged as important regulators in glucose and lipid metabolism. However, comprehensive analysis of lncRNAs in db/db mice skeletal muscle and their potential roles involved in skeletal muscle insulin resistance (IR) remains poorly characterized. Here, we identified 331 lncRNAs, 172 upregulated and 159 downregulated (|fold change|>2, q<0.05), differentially expressed in db/db mice skeletal muscle. Gene Ontology analysis, Pathway analysis and Gene Set Enrichment Analysis of network gene expression revealed the potential functions of dysregulated lncRNAs may involve skeletal muscle function, fatty acid metabolism and the PPAR signaling pathway. In addition, differentially expressed lncRNAs were verified in skeletal muscle from the widely known IR mouse models (db/db and ob/ob mice). Further validation of lncRNAs in C2C12 myotubes exposed with various concentrations of palmitate uncovered that lncRNAs were responsive to palmitate exposure at the high concentrations (0.5mM and 0.75mM). Coexpression analysis revealed the key lncRNA-mRNA interactions and indicated a potential regulatory role of lncRNAs. Moreover, we characterized two candidate lncRNAs Gm15441 and 3110045C21Rik by a comprehensive examination of their genomic context and validated their expression with neighboring genes (Txnip and Ddr2) by the Spearman correlation analysis. Collectively, these findings improve our understanding of lncRNAs that mediate skeletal muscle insulin resistance in diabetes and represent potential molecular therapeutic targets to improve insulin sensitivity and associated metabolic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app