Add like
Add dislike
Add to saved papers

Stability of Hydrogen Hydrates from Second-Order Møller-Plesset Perturbation Theory.

The formation of gas hydrates and clathrates critically depends on the interaction between the host water network and the guest gas species. Density functional calculations can struggle to quantitatively capture these dispersion-type interactions. Here, we report wave function-based calculations on hydrogen hydrates that combine periodic Hartree-Fock with a localized treatment of electronic correlation. We show that local second-order Møller-Plesset perturbation theory (LMP2) reproduces the stability of the different filled-ice-like hydrates in excellent agreement with experimental data. In contrast to various dispersion-corrected density functional theory implementations, LMP2 correctly identifies the pressures needed to stabilize the C0 , C1 , and C2 hydrates and does not find a spurious region of stability for an ice-Ih -based dihydrate. Our results suggest that LMP2 or similar approaches can provide quantitative insights into the mechanisms of formation and eventual decomposition of molecular host-guest compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app