Add like
Add dislike
Add to saved papers

The effects of short-term uniaxial strain on the mechanical properties of mesenchymal stem cells upon TGF-β 1 stimulation.

Cellular mechanical characteristics represent cell ability to produce tissue-specific metabolites. Therefore, to achieve effective cell therapy, a better understanding of the effects of chemo-mechanical stimuli on the mechanical properties of in vitro-treated cells is essential. Herein, we investigated the effects of uniaxial strain on the mechanical properties of mesenchymal stem cells (MSCs) upon transforming growth factor beta 1 (TGF-β1 ) stimulation. The MSCs were categorized into control and test groups. In one test group, the MSCs were treated by TGF-β1 for 6 d, and in the other, they were additionally subjected to 1-d uniaxial strain on day 2. The cell mechanical properties and smooth muscle (SM) gene expression were assessed on days 2, 4, and 6. During the entire experiment, the MSCs treated by TGF-β1 ± uniaxial strain were induced to differentiate into SM-like cells by significantly upregulation of α-actin, SM22α, and h1-calponin in respect to the control samples. When the MSCs were treated with TGF-β1 alone, their stiffness and viscosity decreased significantly on day 2 and then increased by increase in culture time. When the cells were subjected to 1-d uniaxial strain upon TGF-β1 stimulation, their stiffness and viscosity significantly increased on days 2 and 4 and then decreased on day 6 to a level comparable to that of TGF-β1 group. Different paths were noticeable among the treated samples to reach nearly similar states on day 6. It seems that uniaxial strain activates mechanobiological cascades by which cellular mechanical behavior can be regulated after its removal. However, these effects are transient and would diminish over time. The findings may be helpful in the chemo-mechanical regulation of MSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app