Add like
Add dislike
Add to saved papers

COBRAMM 2.0 - A software interface for tailoring molecular electronic structure calculations and running nanoscale (QM/MM) simulations.

We present a new version of the simulation software COBRAMM, a program package interfacing widely known commercial and academic software for molecular modeling. It allows a problem-driven tailoring of computational chemistry simulations with effortless ground and excited-state electronic structure computations. Calculations can be executed within a pure QM or combined quantum mechanical/molecular mechanical (QM/MM) framework, bridging from the atomistic to the nanoscale. The user can perform all necessary steps to simulate ground state and photoreactions in vacuum, complex biopolymer, or solvent environments. Starting from ground-state optimization, reaction path computations, initial conditions sampling, spectroscopy simulation, and photodynamics with deactivation events, COBRAMM is designed to assist in characterization and analysis of complex molecular materials and their properties. Interpretation of recorded spectra range from steady-state to time-resolved measurements. Various tools help the user to set up the system of interest and analyze the results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app