Add like
Add dislike
Add to saved papers

A robust salt-tolerant superoleophobic chitosan/nanofibrillated cellulose aerogel for highly efficient oil/water separation.

Carbohydrate Polymers 2018 November 16
Marine pollution caused by frequent oil spill accidents has already produced catastrophic influence on marine ecological environments. Even though traditional superhydrophobic/superoleophilic surface-coated materials have demonstrated to be effective for oil/water separation, they still suffer from complicated fabrication procedures, mechanical damages and loss of their superoleophobicity in high-salinity environments. Herein, a robust salt-tolerant superoleophobic aerogel was introduced for highly efficient oil/seawater separation, which was fabricated by incorporating nanofibrillated cellulose (NFC) into chitosan (CS) matrix through freeze-drying method. The NFC-reinforced 3D interconnected network structure guaranteed the mechanical performance of the CS/NFC aerogel. Together the inherent hydrophilicity of chitosan with the rough microstructure of the aerogel, excellent underwater superoleophobicity was developed. Notably, the CS/NFC aerogel still maintained its underwater superoleophobicity even after being soaked in high-salinity seawater for 30 days. Moreover, the as-prepared aerogel was able to achieve various kinds of oil/seawater mixtures separation with high efficiency (>99%) and outstanding recyclability (at least 40 separation cycles). These excellent properties combined with its facile fabrication process make it a promising candidate for oil/water separation in marine environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app