Add like
Add dislike
Add to saved papers

Effect of Prolactin on Biochemical and Morphological Parameters of Rabbit Liver in Warm Ischemia.

BACKGROUND: The aim of the study was to assess the degree of liver damage in a rabbit perfused with histidine-tryptophan-ketoglutarate (HTK [Custodiol]) solution with and without the presence of prolactin (PRL) based on biochemical studies in perfundate and ultrastructural analysis of hepatocytes.

MATERIALS AND METHODS: The experiment was carried out on rabbits. Liver ischemia was used in the study, based on Pringle's maneuver. About 70% of the rabbit liver lobes were perfused with HTK with or without the addition of PRL (2.5μg/g liver/h) under ischemic conditions for 2 hours. In the perfundate, the activity of enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), γ-glutamyl transpeptidase (GGT), and lactate concentration were determined. Liver biopsies were collected for histopathologic evaluation under an electron microscope.

RESULTS: The addition of PRL to the HTK significantly reduced the leakage of enzymes from the liver to perfundate compared with the control group without PRL. The activity of ALT, AST, LDH, and GGT in the perfundates obtained after 2-hour perfusion with HTK-PRL solution was lower when compared with activity of the same parameters determined in perfundates with liver perfused with HTK without PRL. The area under the curve (AUC0-2h ) calculated for GGT, LDH, and lactates was significantly higher after perfusion with the HTK than with HTK with the addition of PRL. In the study group, bile was secreted throughout the whole experiment. The morphological confirmation of these results was obtained by means of transmission microscopy.

CONCLUSION: PRL added to the preservation solution significantly inhibits the process of liver cell cytolysis, which may suggest its hepatoprotective effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app