Add like
Add dislike
Add to saved papers

Developmental Resonance Network.

Adaptive resonance theory (ART) networks deal with normalized input data only, which means that they need the normalization process for the raw input data, under the assumption that the upper and lower bounds of the input data are known in advance. Without such an assumption, ART networks cannot be utilized. To solve this problem and improve the learning performance, inspired by the ART networks, we propose a developmental resonance network (DRN) by employing new techniques of a global weight and node connection and grouping processes. The proposed DRN learns the global weight converging to the unknown range of the input data and properly clusters by grouping similar nodes into one. These techniques enable DRN to learn the raw input data without the normalization process while retaining the stability, plasticity, and memory usage efficiency without node proliferation. Simulation results verify that our DRN, applied to the unsupervised clustering problem, can cluster raw data properly without a prior normalization process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app