Add like
Add dislike
Add to saved papers

ℓ₁-Norm Heteroscedastic Discriminant Analysis Under Mixture of Gaussian Distributions.

Fisher's criterion is one of the most popular discriminant criteria for feature extraction. It is defined as the generalized Rayleigh quotient of the between-class scatter distance to the within-class scatter distance. Consequently, Fisher's criterion does not take advantage of the discriminant information in the class covariance differences, and hence, its discriminant ability largely depends on the class mean differences. If the class mean distances are relatively large compared with the within-class scatter distance, Fisher's criterion-based discriminant analysis methods may achieve a good discriminant performance. Otherwise, it may not deliver good results. Moreover, we observe that the between-class distance of Fisher's criterion is based on the ℓ₂-norm, which would be disadvantageous to separate the classes with smaller class mean distances. To overcome the drawback of Fisher's criterion, in this paper, we first derive a new discriminant criterion, expressed as a mixture of absolute generalized Rayleigh quotients, based on a Bayes error upper bound estimation, where mixture of Gaussians is adopted to approximate the real distribution of data samples. Then, the criterion is further modified by replacing ℓ₂-norm with ℓ₁ one to better describe the between-class scatter distance, such that it would be more effective to separate the different classes. Moreover, we propose a novel ℓ₁-norm heteroscedastic discriminant analysis method based on the new discriminant analysis (L1-HDA/GM) for heteroscedastic feature extraction, in which the optimization problem of L1-HDA/GM can be efficiently solved by using the eigenvalue decomposition approach. Finally, we conduct extensive experiments on four real data sets and demonstrate that the proposed method achieves much competitive results compared with the state-of-the-art methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app