Add like
Add dislike
Add to saved papers

Functional biodiversity and plasticity of methanogenic biomass from a full-scale mesophilic anaerobic digester treating nitrogen-rich agricultural wastes.

The effect of ammonia on methanogenic biomass from a full-scale agricultural digester treating nitrogen-rich materials was characterized in batch activity assays subjected to increasing concentrations of total ammonia N. Acetotrophic and methanogenic profiles displayed prolonged lag phases and reduced specific activity rates at 6.0 gN-TAN L-1 , though identical methane yields were ultimately reached. These results agreed with the expression levels of selected genes from bacteria and methanogenic archaea (qPCR of 16S rRNA and mrcA cDNA transcripts). Compound-specific isotope analysis of biogas indicated that ammonia exposure was associated to a transition in methanogenic activity from acetotrophy at 1.0 gN-TAN L-1 to intermediate and complete hydrogenotrophy at 3.5 and 6.0 gN-TAN L-1 . Such pattern matched the results of 16S-Illumina sequencing of genes and transcripts in that predominant methanogens shifted, along with increasing ammonia, from the obligate acetotroph Methanosaeta to the hydrogenotrophic Methanoculleus and the poorly understood methylotrophic Methanomassiliicoccus. The underlying bacterial community structure remained rather stable but, at 6.0 gN-TAN L-1 , the expression level increased considerably for a number of ribotypes that are related to potentially syntrophic genera (e.g. Clostridium, Bellilinea, Longilinea, and Bacteroides). The predominance of hydrogenotrophy at high ammonia levels clearly points to the occurrence of the syntrophic acetate oxidation (SAO), but known SAO bacteria were only found in very low numbers. The potential role of the identified bacterial and archaeal taxa with a view on SAO and on stability of the anaerobic digestion process under ammonia stress has been discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app