Add like
Add dislike
Add to saved papers

Phosphorylation state of Ser 165 in α-tubulin is a toggle switch that controls proliferating human breast tumors.

Cellular Signalling 2018 September 2
Engineered overexpression of protein kinase Cα (PKCα) is known to phosphorylate Ser165 in α-tubulin resulting in stimulated microtubule dynamics and cell motility, and activation of an epithelial-mesenchymal transition (EMT) in non-transformed human breast cells. Here it is shown that endogenous phosphorylation of native α-tubulin in two metastatic breast cell lines, MDA-MB-231-LM2-4175 and MDA-MB-468 is detected at PKC phosphorylation sites. α-Tubulin mutants that simulated phosphorylated (S165D) or non-phosphorylated (S165 N) states were stably expressed in MDA-MB-231-LM2-4175 cells. The S165D-α-tubulin mutant engendered expression of the EMT biomarker N-cadherin, whereas S165 N-α-tubulin suppressed N-cadherin and induced E-cadherin expression, revealing a 'cadherin switch'. S165 N-α-tubulin engendered more rapid passage through the cell cycle, induced shorter spindle fibers and exhibited more rapid proliferation. In nude mice injected with MDA-MB-231-LM2-4175 cells, cells expressing S165 N-α-tubulin (but not the S165D mutant) produced hyper-proliferative lung tumors with increased tumor incidence and higher Ki67 expression. These results implicate the phosphorylation state of Ser165 in α-tubulin as a PKC-regulated molecular switch that causes breast cells to exhibit either EMT characteristics or hyper-proliferation. Evaluation of genomic databases of human tumors strengthens the clinical significance of these findings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app