Add like
Add dislike
Add to saved papers

HSV-1 DNA polymerase 3'-5' exonuclease-deficient mutant D368A exhibits severely reduced viral DNA synthesis and polymerase expression.

Herpesviruses, including herpes simplex virus-1, encode and express a DNA polymerase that is required for replication of their dsDNA genomes. The catalytic subunit of this enzyme contains a 3'-5' exonuclease that is involved in proofreading during replication. Although certain mutations that severely impair exonuclease activity are not lethal to the virus, it was reported that virus containing the substitution of alanine for aspartate 368 (D368A), which ablates exonuclease activity, could not be recovered, raising the possibility that this activity is essential for viral replication. To investigate this issue, we produced virus containing this mutation (D368A Pol) using a complementing cell line. D368A Pol virus was unable to form plaques on non-complementing cells. Viral DNA synthesis and polymerase activity were severely inhibited in D368A-infected cells, as was expression of the enzyme, suggesting that effects on polymerase expression rather than on exonuclease activity per se largely explain the lethal phenotype of this mutation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app