Add like
Add dislike
Add to saved papers

Viable Synthesis of Porous MnCo 2 O 4 /Graphene Composite by Sonochemical Grafting: A High-Rate-Capable Oxygen Cathode for Li-O 2 Batteries.

With an anticipation of their use in electric vehicles, Li-O2 batteries are found to be attractive despite their complex chemistry and drawbacks. To be successful, cathode materials that are robust enough to overcome the sluggish kinetics of the charge-discharge reactions are essential. This work reports sonochemically synthesized porous MnCo2 O4 /graphene (MCO/G) as a hybrid cathode material in nonaqueous Li-O2 batteries. The MCO/G hybrid is synthesized in less than four hours and offers a strong synergistic coupling between the MnCo2 O4 nanospheres and graphene sheets. It catalyzes the oxygen reduction through a three-electron-transfer process and initiates the oxygen evolution at 1.55 V vs. RHE in basic medium. A small charge-discharge voltage hysteresis of 0.8 V and a cycle life of 250 cycles at a limited capacity of 1000 mAh g-1 in a tetraglyme-based nonaqueous Li-O2 battery is demonstrated. The porous channels created on the sonochemically synthesized cathode facilitates easy oxygen adsorption onto the active sites to accommodate more discharge products following its decomposition. It exhibits a better rate capability in comparison to the widely used Vulcan carbon and benchmark Pt/C catalysts. The excellent cyclability, rate capability, and low overpotential demonstrates MnCo2 O4 /graphene composite as a promising cathode candidate for Li-O2 batteries. The porous nanosphere architecture with internal oxygen diffusion pathways and peripheral conductive graphene extensions fulfils the requirements that a robust cathode is expected to have to overcome the harsh Li-O2 battery conditions and to serve as a high-rate-capable cathode for Li-O2 batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app