Add like
Add dislike
Add to saved papers

Synthesis of Light-Responsive Pyrene-Based Polymer Nanoparticles via Polymerization-Induced Self-Assembly.

The use of an in situ, one-pot polymerization-induced self-assembly method to synthesize light-responsive pyrene-containing nanoparticles is reported. The strategy is based on the chain extension of a hydrophilic macromolecular chain transfer agent, poly(oligo(ethylene glycol) methyl ether methacrylate), using a light-responsive monomer, 1-pyrenemethyl methacrylate (PyMA), via a reversible addition-fragmentation chain transfer dispersion polymerization; yielding nanoparticles of various morphologies (spherical micelles and worm-like micelles). In this process, addition of comonomers, such as butyl methacrylate (BuMA) or methyl methacrylate (MMA), are required to obtain high PyMA monomer conversion (>80% in 24 h). The addition of comonomers reduces the π-π stacking of the pyrene moieties, which facilitates the diffusion of monomers in the nanoparticle core. The addition of BuMA (as a comonomer) offers P(PyMA-co-BuMA) core-forming chains with high mobility that enables the reorganization of chains and then the evolution of morphology to form vesicles. In contrast, when MMA comonomer is used, kinetically trapped spheres are obtained; this is due to the low mobility of the core-forming chains inhibiting in situ morphological evolution. Finally, the UV-light-induced dissociation of these light-responsive nanoparticles due to the gradual cleavage of the pyrene moieties and the subsequent hydrophobic-to-hydrophilic transitions of the core-forming blocks is demonstrated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app