JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Design and Synthesis of a Reconfigurable DNA Accordion Rack.

DNA nanostructure-based mechanical systems or DNA nanomachines, which produce complex nanoscale motion in 2D and 3D in the nanometer to ångström resolution, show great potential in various fields of nanotechnology such as the molecular reactors, drug delivery, and nanoplasmonic systems. The reconfigurable DNA accordion rack, which can collectively manipulate a 2D or 3D nanoscale network of elements, in multiple stages in response to the DNA inputs, is described. The platform has potential to increase the number of elements that DNA nanomachines can control from a few elements to a network scale with multiple stages of reconfiguration. In this protocol, we describe the entire experimental process of the reconfigurable DNA accordion rack of 6 by 6 meshes. The protocol includes a design rule and simulation procedure of the structures and a wet-lab experiment for synthesis and reconfiguration. In addition, analysis of the structure using TEM (transmission electron microscopy) and FRET (fluorescence resonance energy transfer) is included in the protocol. The novel design and simulation methods covered in this protocol will assist researchers to use the DNA accordion rack for further applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app