Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In-vivo elongation of anterior and posterior cruciate ligament in bi-cruciate retaining total knee arthroplasty.

Anterior and posterior cruciate ligament (ACL and PCL) sacrifice in contemporary total knee arthroplasty (TKA) has been considered a potential factor leading to abnormal knee kinematics. Bi-cruciate retaining (BCR) TKA design allows retention of both ACL and PCL. However, there is a limited data on the ACL/PCL in-vivo elongation characteristics of BCR TKA. The study aimed to evaluate and compare the in-vivo elongation patterns of ACL/PCL between BCR TKA and contralateral non-implanted knee and to explore potential factors leading to the changed elongation patterns between limbs. ACL/PCL elongations of both knees during sit-to-stand were measured in 29 unilateral BCR TKA patients using a validated dual fluoroscopic tracking technique. Joint gap changes of the BCR TKA knees relative to the contralateral knee were quantified. BCR TKA and the contralateral non-implanted knee exhibited similar ACL elongation at extension and clinical anterior knee laxity. However, BCR TKA showed significantly greater PCL elongation during flexion than the non-implanted knee. Variation of changed elongation was observed for both ACL and PCL, suggesting a heterogeneous restoration of normal ACL/PCL functions. A significant correlation was found between extension joint gap change and the change of ACL elongation, highlighting the importance of precise joint line restoration and soft tissue balancing during BCR TKA surgery. Our findings suggest that BCR TKA did not fully restore "near-normal" cruciate ligament elongation patterns and anteroposterior stability. Considerable heterogeneity remains in the retained ligament elongation patterns and warrants further investigations of multifactorial factors to optimize ACL/PCL functions in BCR TKA. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3239-3246, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app