JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Secondary structures in synthetic polypeptides from N-carboxyanhydrides: design, modulation, association, and material applications.

Synthetic polypeptides derived from the ring-opening polymerization of N-carboxyanhydrides can spontaneously fold into stable secondary structures under specific environmental conditions. These secondary structures and their dynamic transitions play an important role in regulating the properties of polypeptides in self-assembly, catalysis, polymerization, and biomedical applications. Here, we review the current strategies to modulate the secondary structures, and highlight the conformation-specific dynamic properties of synthetic polypeptides and the corresponding materials. A number of mechanistic studies elucidating the role of secondary structures are discussed, aiming to provide insights into the new designs and applications of synthetic polypeptides. We aim for this article to bring to people's attention synthetic polymers with ordered conformations, which may exhibit association behaviors and material properties that are otherwise not found in polymers without stable secondary structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app