Add like
Add dislike
Add to saved papers

Ultrafast demagnetization in iron: Separating effects by their nonlinearity.

The laser-driven ultrafast demagnetization effect is one of the long-standing problems in solid-state physics. The time scale is given not only by the transfer of energy, but also by the transport of angular momentum away from the spin system. Through a double-pulse experiment resembling two-dimensional spectroscopy, we separate the different pathways by their nonlinear properties. We find (a) that the loss of magnetization within 400 fs is not affected by the previous excitations (linear process), and (b) we observe a picosecond demagnetization contribution that is strongly affected by the previous excitations. Our experimental approach is useful not only for studying femtosecond spin dynamics, but can also be adapted to other problems in solid-state dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app