Add like
Add dislike
Add to saved papers

miR-34a Regulates Multidrug Resistance via Positively Modulating OAZ2 Signaling in Colon Cancer Cells.

Although aberrant expression of miR-34a, an essential tumor suppressor miRNA, has been frequently observed in colon cancer (CCa), whether miR-34a can regulate CCa progression by modulating other facets of this malignancy (such as multidrug resistance, MDR) remains unknown. Here, we report for the first time that miR-34a expression was significantly downregulated in clinical CCa samples from oxaliplatin-resistant patients and in experimentally established multidrug-resistant CCa cells. By using histoculture drug response assay, we further confirmed that clinical CCa samples with lower miR-34a expression appeared to be more resistant to chemotherapy. Functionally, ectopic expression of exogenous miR-34a resensitized multidrug-resistant HCT-8/OR cells to oxaliplatin treatment, whereas miR-34a inhibition augmented the oxaliplatin resistance in chemosensitive HCT-8 cells. Mechanistically, miR-34a positively regulated the mRNA stability of the ornithine decarboxylase antizyme 2 (OAZ2) by directly targeting its three prime untranslated region (3'UTR). Consequently, suppression of the expression of miR-34a/OAZ2 signaling by chemotherapeutic agents significantly enhanced the activation of MDR-associated ATP-binding cassette (ABC) transporters and antiapoptosis pathways, thus leading to MDR development in CCa cells. Collectively, our combined analysis reveals a critical role of miR-34a/OAZ2 cascade in conferring a proper cellular response to CCa chemotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app