JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Expanding the product spectrum of value added chemicals in microbial electrosynthesis through integrated process design-A review.

Microbial electrosynthesis (MES) is a novel microbial electrochemical technology proposed for chemicals production with the storage of sustainable energy. However, the practical application of MES is currently restricted by the limited low market value of products in one-step conversion process, mostly acetate. A theme that is pervasive throughout this review is the challenges associated with the expanded product spectrum. Several recent research efforts to improve acetate production, using novel reactor configuration, renewable power supply, and various 3-D cathode are summarized. The importance of genetic modification, two-step hybrid process, as well as input substrates other than CO2 are highlighted in this review as the future research paths for higher value chemicals production. At last, how to integrate MES with existing biochemicals processes is proposed. Definitely, more studies are encouraged to evaluate the overall performances and economic efficiency of these integrated process designs to make MES more competitive.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app