Add like
Add dislike
Add to saved papers

Oxidation of marine oils during in vitro gastrointestinal digestion with human digestive fluids - Role of oil origin, added tocopherols and lipolytic activity.

Food Chemistry 2019 January 2
The formation of malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE), 4-hydroxy-2-nonenal (HNE), and 4-oxo-2-nonenal (ONE) in cod liver-, anchovy-, krill-, and algae oil during in vitro digestion with human gastrointestinal fluids was investigated. Adding rabbit gastric lipase, lipase inhibitor (orlistat) and tocopherols to cod liver oil, lipolysis and oxidation was also studied. Among the marine oils, the highest aldehyde levels (18 µM MDA, 3 µM HHE and 0.2 µM HNE) were detected after digestion of cod liver oil, while the lowest levels were detected in krill and algae oils. Addition of rabbit gastric lipase significantly increased the release of HNE during the digestion. Orlistat significantly reduced lipolysis and MDA formation. Formation of MDA and HHE was delayed by tocopherols, the tocopherol mix Covi-ox® T 70 EU being more effective than pure α-tocopherol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app