Add like
Add dislike
Add to saved papers

Halomonas and Pathway Engineering for Bioplastics Production.

Traditional microbial chassis, including Escherichia coli, Bacillus subtilis, Ralstonia eutropha, and Pseudomonas putida, are grown under neutral pH and mild osmotic pressure for production of chemicals and materials. They tend to be contaminated easily by many microorganisms. To address this issue, next-generation industrial biotechnology employing halophilic Halomonas spp. has been developed for production of bioplastics polyhydroxyalkanoates (PHAs) and other chemicals. Halomonas spp. that can be grown contamination free under open and unsterile condition at alkali pH and high NaCl have been engineered to produce several PHA polymers in elongated or enlarged cells. New pathways can also be constructed both in plasmids and on chromosomes for Halomonas spp. Synthetic biology approaches and parts have been developed for Halomonas spp., allowing better control of their growth and product formation as well as morphology adjustment. Halomonas spp. and their synthetic biology will play an increasingly important role for industrial production of large volume chemicals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app