Add like
Add dislike
Add to saved papers

Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide.

The electricity-driven bioreduction of carbon dioxide to multi-carbon organic compounds, particularly acetate, has been achieved in microbial electrosynthesis (MES). MES performance can be limited by the amount of cathode surface area available for biofilm formation and slow substrate mass transfer. Here, a fluidized three-dimensional electrode, containing granular activated carbon (GAC) particles, was constructed via MES. The volumetric acetate production rate increased by 2.8 times through MES with 16 g L-1 GAC (0.14 g L-1  d-1 ) compared with that of the control (no GAC), and the final acetate concentration reached 3.92 g L-1 within 24 days. Electrochemical, scanning electron microscopy, and microbial community analyses suggested that GAC might improve the performance of MES by accelerating direct and indirect (via H2 ) electron transfer because GAC could provide a high electrode surface and a favorable mass transport. This study attempted to improve the efficiency of MES and presented promising opportunities for MES scale-up.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app