JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Small diameter helical vascular scaffolds support endothelial cell survival.

There is an acute clinical need for small-diameter vascular grafts as a treatment option for cardiovascular disease. Here, we used an intelligent design system to recreate the natural structure and hemodynamics of small arteries. Nano-fibrous tubular scaffolds were fabricated from blends of polyvinyl alcohol and gelatin with inner helices to allow a near physiological spiral flow profile, using the electrospinning technique. Human coronary artery endothelial cells (ECs) were seeded on the inner surface and their viability, distribution, gene expression of mechanosensitive and adhesion molecules compared to that in conventional scaffolds, under static and flow conditions. We show significant improvement in cell distribution in helical vs. conventional scaffolds (94% ± 9% vs. 82% ± 7.2%; P < 0.05) with improved responsiveness to shear stress and better ability to withhold physiological pressures. Our helical vascular scaffold provides an improved niche for EC growth and may be attractive as a potential small diameter vascular graft.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app