Add like
Add dislike
Add to saved papers

Quantifying the impact of a periodic presence of antimicrobial on resistance evolution in a homogeneous microbial population of fixed size.

The evolution of antimicrobial resistance generally occurs in an environment where antimicrobial concentration is variable, which has dramatic consequences on the microorganisms' fitness landscape, and thus on the evolution of resistance. We investigate the effect of these time-varying patterns of selection within a stochastic model. We consider a homogeneous microbial population of fixed size subjected to periodic alternations of phases of absence and presence of an antimicrobial that stops growth. Combining analytical approaches and stochastic simulations, we quantify how the time necessary for fit resistant bacteria to take over the microbial population depends on the alternation period. We demonstrate that fast alternations strongly accelerate the evolution of resistance, reaching a plateau for sufficiently small periods. Furthermore, this acceleration is stronger in larger populations. For asymmetric alternations, featuring a different duration of the phases with and without antimicrobial, we shed light on the existence of a minimum for the time taken by the population to fully evolve resistance. The corresponding dramatic acceleration of the evolution of antimicrobial resistance likely occurs in realistic situations, and may have an important impact both in clinical and experimental situations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app