Add like
Add dislike
Add to saved papers

Configurational and Conformational Equilibria of N 6 -(2-Deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5- N-methylformamidopyrimidine (MeFapy-dG) Lesion in DNA.

The most common lesion in DNA occurring due to clinical treatment with Temozolomide or cellular exposures to other methylating agents is 7-methylguanine (N7-Me-dG). It can undergo a secondary reaction to form N6 -(2-deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5- N-methylformamidopyrimidine (MeFapy-dG). MeFapy-dG undergoes epimerization in DNA to produce either α or β deoxyribose anomers. Additionally, conformational rotation around the formyl bond, C5- N5 bond, and glycosidic bond may occur. To characterize and quantitate the mixture of these isomers in DNA, a 13 C-MeFapy-dG lesion, in which the CH3 group of the MeFapy-dG was isotopically labeled, was incorporated into the trimer 5'-TXT-3' and the dodecamer 5'-CATXATGACGCT-3' (X = 13 C-MeFapy-dG). NMR spectroscopy of both the trimer and dodecamer revealed that the MeFapy-dG lesion exists in single strand DNA as ten configurationally and conformationally discrete species, eight of which may be unequivocally assigned. In the duplex dodecamer, the MeFapy-dG lesion exists as six configurationally and conformationally discrete species. Analyses of NMR data in the single strand trimer confirm that for each deoxyribose anomer, atropisomerism occurs around the C5- N5 bond to produce R a and S a atropisomers. Each atropisomer exhibits geometrical isomerism about the formyl bond yielding E and Z conformations. 1 H NMR experiments allow the relative abundances of the species to be determined. For the single strand trimer, the α and β anomers exist in a 3:7 ratio, favoring the β anomer. For the β anomer, with respect to the C5- N5 bond, the R a and S a atropisomers are equally populated. However, the Z geometrical isomer of the formyl moiety is preferred. For the α anomer, the E- S a isomer is present at 12%, whereas all other isomers are present at 5-7%. DNA processing enzymes may differentially recognize different isomers of the MeFapy-dG lesion. Moreover, DNA sequence-specific differences in the populations of configurational and conformational species may modulate biological responses to the MeFapy-dG lesion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app