Add like
Add dislike
Add to saved papers

The glutamine-glutamate cycle regulates synaptic glutamate release in the ventrolateral ventromedial nucleus of the hypothalamus of perinatal female rats.

The astrocytic glutamine (Gln)-glutamate (Glu) cycle (GGC) supplies Gln for the regulation of glutamatergic synaptic transmission (GST) in the adult hippocampus. Increased synaptic Glu release in the perinatal ventrolateral ventromedial nucleus of the hypothalamus (vlVMH) modulates sexual differentiation, however, whether GGC regulates GST in the perinatal vlVMH has not been determined. Sex differences in oestradiol (E2 ) levels exist in the neonatal hypothalamus, and E2 increases levels of glutamine synthetase and glutaminase, two key enzymes involved in the GGC. Thus, it is hypothesised that sexually dimorphic phenotypes may exist in glutamatergic synapses associated with the GGC in the vlVMH in perinatal rats. Whole-cell voltage-clamp recordings in vlVMH neurones in brain slices from male and female pups revealed that pharmacological disruption of the GGC by α-(methylamino) isobutyric acid (5 mmol L-1 ), which blocks neuronal Gln uptake; or by l-methionine sulphoximine (1.5 mmol L-1 ), which inhibits astrocytic Gln synthesis, decreased miniature excitatory postsynaptic current (mEPSC) amplitudes in female but not male pups. By contrast, GGC interruptions decreased evoked (e)EPSC amplitudes in both sexes following increased synaptic activity produced by a period of stimulation. In male pups, the decreased eEPSCs were attributable to reduced Glu release, as assessed by paired-pulse stimulations, whereas, in female pups, they were attributable to decreased Glu content in the synaptic vesicles, as measured by strontium-evoked mEPSCs. The l-methionine sulphoximine-mediated decrease in eEPSCs was rapidly rescued by exogenous Gln in female but not male pups. The reductions in mEPSCs and eEPSCs in female pups were accompanied by enhanced blocking effects of the low-affinity Glu AMPA receptor antagonist, γ-d-glutamylglycine, consistent with diminished Glu release. In conclusion, female, but not male pups, rely on constitutive astrocytic Gln for sustained synaptic Glu release in the vlVMH. This glutamatergic synaptic phenotype may be associated with brain and behaviour feminisation and/or defeminisation in rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app